LOW PRESSURE FILTERS **NFHD Series**

Modular Inline Duplex Filters 500 psi • up to 450 gpm

Features

- Top access for easy element changeout. •
- All models have an air bleed valve (vent) installed in the lid.
- Single large element with no leak points for highest efficiency and dirt capacity
- Lid with swing bolts for fast servicing without tools •
- Drain port dirty side (right side of Inlet Port) SAE 12 (3/4") •
- Clogging Indicator for local and remote signals
- Easily banked in parallel (manifolded) for high viscosity • applications.
- Available with Betterfit elements consult HYDAC. •
- Notes: This filter is configured with anR.... type (return/low pressure) element, so if the filter requires a bypass, the bypass is located in the closed end cap of the cartridge element.

Α W/A

В

Inlet / Outlet Port Location Configurator

NFHD1300/2600 Inlet/Outlet

Hydraulic Symbol

NFHD5200/7800/10400 2.X Inlet/

00	03	Joiniguia	09
30	33		39
60			69
	93		99

0 = Pointed to Top

3 = Pointed to Front 6 = Pointed to Bottom

9 = Pointed to Back

First Number = Inlet Orientation Second Number = Outlet Orientation

Technical Specifications

6

Mounting Method	Floor mounting brackets			
Port Connection	SAE DN 102 Flange Code 61			
Flow Direction (Standard)	Inlet: Side Outlet: Side			
Construction Materials				
Head, Lid, Elbows, Manifolds Housing	Ductile Iron Steel			
Flow Capacity				
1300 2600, 5200, 7800, 10400	343 gpm (1300 lpm) 450 gpm (1700 lpm) (Flow limited by 4" pipe size)			
Housing Pressure Rating				
Max. Allowable Working Pressure Fatigue Pressure Burst Pressure	500 psi (34 bar) 500 psi (34 bar) > 1440 psi (100 bar)			
Element Collapse Pressure Rating	g			
ON, W/HC ECON2, BN4AM, AM, P/HC	290 psid (20 bar) 145 psid (10 bar)			
Fluid Temp. Range	14°F to 212°F (-10°C to 100°C)			
Consult HYDAC for applications below 14	4°F (-10°C)			
Fluid Compatibility				
Compatible with all hydrocarbon based, synthetic, water glycol, oil/water emulsion, and high water based fluids when the appropriate seals are selected.				
Indicator Trip Pressure				
$\Delta P = 29 \text{ psid } (2 \text{ bar}) -10\%$ (standard) $\Delta P = 72 \text{ psid } (5 \text{ bar}) -10\%$ (optional)				
Bypass Valve Cracking Pressure				
$\Delta P = 43 \text{ psid } (3 \text{ bar}) +10\%$ $\Delta P = 87 \text{ psid } (6 \text{ bar}) +10\%$				

Applications

Gearboxes

Steel / Heavy Industry

Industrial

Model Code NFHD ON 1300 E A P 3 BM 1.X 16 Filter Type NFHD = In-line Duplex Return Line Filter Element Media ON = Optimicron® BN/AM = Betamicron[®]/Aquamicron[®] ECON2 = ECOmicron[®] (Low Collapse) AM = Aquamicron® W/HC = Wire Mesh P/HC = Polyester Size 1300, 2600, 5200, 7800, 10400 **Operating Pressure** E = 500 psi (34 bar) Type of Change Over Ball valve А = Type of Connection SAE DN 102 (4") Code 61 flange Ρ = Filtration Rating (micron) 1, 3, 5, 10, 15, 20 = ON 3.10 = BN/AM3, 5, 10, 20 = BN/HC, ECO/N 40 = AM25, 50, 100, 200 = W/HC 10, 20 = P/HC Type of ΔP Clogging Indicator A, BM, C, D (Others available upon request, see Clogging Indicators section.) Type Number Modification Number (latest version always supplied) Port Configuration SAE DN 102, (4") Code 61 Flange 16 Seals (omit) = Nitrile rubber (NBR) (standard) V = Fluorocarbon elastomer (FKM) EPR = Ethylene propylene rubber (EPR) **Bypass Valve** (omit) 43 psid (3 bar) (standard) = B1 14.5 psid (1 bar) (lube or coolant) = **B6** 87 psid (6 bar) (return line extended life) = not available with ECON2 KB = no bypass (flushing system) **Supplementary Details** L24, L48, L110, L220 = Lamp for D-type clogging indicator (LXX, XX = voltage) SB Equalization valve set = Indicator Thermal Lockout, 100°F (C & D indicators only) FM Manual vent valve set T100 = = Electrical Indicator with underwriter's recognition VKD Drain manifold cRUus = = SO263 = Modification of elements for Skydrol or HYJET phosphate ester fluids SFREE = Element specially designed to minimize electrostatic charge generation SO376 = Modification of ON and W/HC elements for HFA, HFB, HFC, and HFD flame retardant liquids Flow Path

00, 03, 09, 30, 33, 39, 60, 69, 93.99

Note: For Alternate Connection Flow Path (i.e. 39 - Inlet Front / Outlet Back) - See previous page for "Inlet / Outlet Port Configurator."

(For additional details and options, see Clogging Indicators section.)

Model Codes Containing RED are non-stock items — Minimum quantities may apply – Contact HYDAC for information and availability

Dimensions NFHD 1300 / 2600

Size	1300	2600
Weight (lbs.)	302.1	357

Dimensions shown are [inches] millimeters for general information and overall envelope size only. Weights listed include element. For complete dimensions please contact HYDAC to request a certified print.

Dimensions: NFHD 5200

Size	5200
Weight (lbs.)	803

Dimensions shown are [inches] millimeters for general information and overall envelope size only. Weights listed include element. For complete dimensions please contact HYDAC to request a certified print.

Dimensions: NFHD 7800

Size	7800
Weight (lbs.)	1008

Dimensions shown are [inches] millimeters for general information and overall envelope size only. Weights listed include element. For complete dimensions please contact HYDAC to request a certified print.

Dimensions: NFHD 10400

Size	10400
Weight (lbs.)	1459

Dimensions shown are [inches] millimeters for general information and overall envelope size only. Weights listed include element. For complete dimensions please contact HYDAC to request a certified print.

Sizing Information

Total pressure loss through the filter is as follows:

Assembly ΔP = Housing ΔP + Element ΔP

Housing Curve:

Pressure loss through housing is as follows:

Housing ΔP = Housing Curve $\Delta P \times \frac{Actual Specific Gravity}{0.86}$

The curve below shows the clean ΔP through the Housing for a single filter. To determine Clean ΔP for manifolds with multiple housings, multiply the Clean ΔP curve value by the percentage value in the table.

$\Delta \mathbf{P}$ Housing

NFHD System	Multiplier
5200	93%
7800	83%
10400	74%

Example

Conditions				
400 gpm flow				
NFHD 10400 manifold				
specified	= 9 psid			
ΔP Curve	= 9 psid X 0.74			
ΔP 10400	= 6.7 psid Piping & Housing			
Fluid Specific Gr = .86 psid				
ΔP Total System = 6.7 psid ΔP Housing + ΔP Element				

Adjustments must be made for viscosity & specific gravity of the fluid to be used! (see "Sizing HYDAC Filter Assemblies" in Section B - Overview)

Bypass Valve Curve:

Curves shown are applicable for mineral oil with a specific gravity of 0.86. Differential pressure increases in proportion to the specific gravity of the fluid.

 ΔP Valve = ΔP Curve x $\frac{Actual Specific Gravity}{0.86}$

Element ΔP Calculations:

Sizing (K) Flow Factors below show the pressure drops across clean elements (excluding housings and piping). (K) Factors are calculated from mineral based fluid at viscosity of 141 SUS and specific gravity of 0.86. To determine clean ΔP for NFH manifolds with more than one housing, use the (K) factors below and divide total flow rate by # towers per side.

Element ΔP = Elements (k) flow Factor x	total flow	Actual Viscosity (SUS)	$x \frac{\text{Actual Sp Gravity}}{1} = 7.09 \text{ psid}$
1	filter towers (on one side)	141	0.86

Exampl	le

Conditions	Selection - NFDH 10400 Filter
Lube system Viscosity of 1,000 SUS Specific gravity 0.86 400 gpm flow Low pressure drop essential 10 µm Optimicron [®] filter element	An NFHD 10400 filter (with 4 towers) gives an Adjusted Clean element ΔP as follows: Clean Assembly $\Delta P = \Delta P$ Housing & ΔP Element Clean $\Delta P = \frac{400 \text{ gpm}}{4 \text{ towers}} \times 0.01 = 1.0 \text{ psid}$ 4 towers Clean $\Delta P_{adj.} = 1.0 \times 1000 \times 0.86 = 7.09 \text{ psid}$ 141 0.86 Clean Assembly $\Delta P = 6.7 \text{ psid} + 7.09 \text{ psid} = 13.8 \text{ psid}$ housing elements

D108 HYDAC

Element K Factors

 $\Delta P \text{ Elements} = \text{Elements (K) Flow Factor x Flow Rate (gpm) x} \frac{\text{Actual Viscosity (SUS) x Actual Specific Gravity}}{141 \text{ SUS}} \\ 0.86$

Optimicron			R.	ON		
Size	1 µm	3 µm	5 µm	10 µm	15 µm	20 µm
1300 R XXX ON	0.094	0.04	0.032	0.019	0.018	0.012
2600 R XXX ON	0.046	0.02	0.016	0.01	0.009	0.006

Stat-X	RXSX											
Size	3 µm	5 µm	10 µm	20 µm								
1300 R XXX XSX	0.04	0.032	0.019	0.012								
2600 R XXX XSX	0.02	0.016	0.01	0.006								

ECOmicron	RECON2											
Size	3 µm	5 µm	10 µm	20 µm								
1300 R XXX ECON2	0.044	0.033	0.022	0.016								
2600 R XXX ECON2	0.022	0.016	0.011	0.005								

Betamicron/Aquamicron	RE	3N4AM
Size	3 µm	10 µm
1300 R XXX BN4AM	0.088	0.033
2600 R XXX BN4AM	0.055	0.016

Aquamicron	RAM
Size	40 µm
1300 R 040 AM	0.026
2600 R 040 AM	0.013

Wire Mesh	RW/HC	Polyester	R	P/HC
Size	25, 50, 100, 200 μm	Size	10 µm	
1300 R XXX W/HC	0.002	1300 R XXX P/HC	0.004	
2600 R XXX W/HC	0.001	2600 R XXX P/HC	0.002	

All Element K Factors in psi / gpm.

Notes

														灦

20 µm 0.002 0.001