DAC INTERNATIONAL

Process Multi-Rheo Filter PMRF

1. TECHNICAL SPECIFICATIONS

1.1 GENERAL

The filter series PMRF (for duplex filters see PMRFD) Process Multi-Rheo Filter completes the HYDAC Process Technology inline filter series. These filters use HYDAC FlexMicron filter elements. The elements feature outstanding contamination retention capacities. The filter housings are available in 7 different sizes and lengths and therefore a suitable filter can be found for every process. By using clogging indicators which monitor the differential pressure, the condition of the filter can be determined at any time.

Typical areas of application for this filter series are:

- Process water treatment
- Filtration of cooling lubricants and washing fluids
- Pure and ultrapure water production
- Boiler feed water
- Extending the service life of circulating fluids
- Protection filtration for UV and membrane systems

1.2 HOUSING

The filter housings in the PMRF series are designed in accordance with international regulations. They are available in carbon steel or stainless steel and in various lengths.

1.3 FILTER ELEMENTS

1.3.1 FlexMicron E (Economy)

The filter elements in the FlexMicron E (Economy) product line are depth filter elements produced using melt-blown technology. They are used particularly in applications where an average level of fluid cleanliness and material purity is required and they provide a costeffective solution. Available lengths 10", 20", 30", 40" with filtration rates of 95 %.

1.3.2 FlexMicron S (Standard)

The filter elements in the FlexMicron S (Standard) product line are SpunSpray depth filter elements produced using melt-blown technology. They are used particularly in applications where a high level of fluid cleanliness and

material purity is required. Available lengths 10", 20", 30", 40" with filtration rates of up to 99.8 %.

1.3.3 FlexMicron P (Premium)

The filter elements in the FlexMicron P (Premium) product line are heavyduty elements using Pleat Technology, produced in melt-blown or high-quality glass fibre technology. They are used particularly in applications requiring high levels of cleanliness. Available lengths 10", 20", 30", 40" with a filtration rate of up to 99.99 %.

E 7.714.1/04.14

2. FILTER SPECIFICATIONS

2.1 SUMMARY OF TECHNICAL SPECIFICATIONS OF THE FILTER HOUSING (STANDARD CONFIGURATION))

Size	Le	ngt che	h s1		Coni	nectio	n	Mate	erials				Pressure range			Temperature	Weight	Volume
	ļ	J. 10	.0]								ı u		_					
	10	20	30	40	SAE	Pipe thread G	DIN DN	Stainless steel ¹⁾	Carbon steel with int. corrosion protection	Carbon steel without int. corrosion protection	PN6	PN10	PN16	N25	PN40	[°C]	[kg]	M
1	•	•	•	•	0,	1"		•			Ë	•			•		7.4	8.4
	Ĺ	_	Ĺ															
2	•	•	•	•	2"	2", 1.5"	50	•			•	•					34	38
3	•	•	•	•	2"	2", 1.5"	50	•			•	•					44	65
43)				•			50/ 80/ 100 80/	•	•	•		•	•	•		-10 to 90	140	120
5 ³⁾				•			100/	•	•	•		•	•	•			200	180
6 ³⁾				•			150 100/ 150/ 200	•	•	•		•	•	•			280	240
7 ³⁾				•			200 150/ 200/ 250	•	•	•		•	•	•			370	465

¹⁾ Size 1 in stainless steel 1.4571, sizes 2 to 7 in stainless steel 1.4301

2.2 FURTHER SPECIFICATIONS OF THE FILTER HOUSING

2.2.1 Seal materials

- NBR
- FPM (Viton)
- EPDM

2.2.2 Corrosion protection, external

• 2 layer primer (not required for stainless steel filters)

2.2.3 Corrosion protection, internal

2K epoxy coating (not required for stainless steel filters or for type NU)

2.2.4 Documentation

Operating and maintenance manual

2.3 OPTIONAL VERSIONS OF FILTER **HOUSING**

There are a range of optional versions available for the PRMF. For technical details and prices, please contact our Technical Sales Department at Head Office.

2.3.1 Housing manufacture

 ASME Code Design (with or without U-Stamp)

2.3.2 Flange connections

- ANSI
- JIS

2.3.3 Housing materials

- Various qualities of stainless steel
- Various qualities of carbon steel

2.3.4 Seal materials

 Various seal materials on request, depending on the resistance to the

2.3.5 Corrosion protection and external finishes

- RAL colours acc. customer requirements
- Various multi layer coatings

2.3.6 Differential pressure monitoring

- Visual
- Electrical
- Visual electrical
- Differential pressure gauge with 2 microswitches

2.3.7 Documentation

- Manufacturer's test certificates
- Material certificates (3.1 according to DIN EN 10204)
- 3rd parties (TÜV, ABS, Lloyds, etc.)
- Welding procedure specifications (WPS) / Procedure Qualification Record (PQR)
- Inspection plan

and many other documents available on request

Further optional models on request.

²⁾ based on length of 40 inches

³⁾ includes cover lifting device

2.4 SUMMARY OF TECHNICAL SPECIFICATIONS OF FILTER ELEMENTS

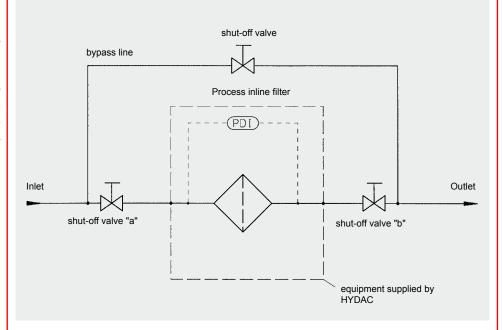
2.4.1 FlexMicron E (Economy)

Size	No. of filter elements	Filter element type	Filter materials and filtration ratings [µm]
			Polypropylene
1	1	FlexMicron E	Not available
2	3 or 5	FlexMicron E	
3	7 or 11	FlexMicron E	
4	17	FlexMicron E	1, 3, 5, 10, 20, 30, 40, 50, 70, 90
5	22	FlexMicron E	
6	36	FlexMicron E	
7	52	FlexMicron E	

2.4.2 FlexMicron S (Standard)

Size	No. of filter elements	Filter element type	Filter materials and filtration ratings [µm]			
			Polypropylene	Polyamide		
1	1	FlexMicron S	Not available			
2	3 or 5	FlexMicron S				
3	7 or 11	FlexMicron S				
4	17	FlexMicron S	1, 3, 5, 10, 20, 30, 40, 50, 70, 90	1, 3, 5, 10, 20, 30, 40, 50, 70, 90		
5	22	FlexMicron S				
6	36	FlexMicron S				
7	52	FlexMicron S				

2.4.3 FlexMicron P (Premium)


Size	No. of filter elements	Filter element type	Filter materials and filtration ratings [µm]			
			Polyester	Glass fibre		
1	1	FlexMicron P				
2	3 or 5	FlexMicron P				
3	7 or 11	FlexMicron P				
4	17	FlexMicron P	1, 3, 5, 10, 20, 30, 40, 50, 70, 90	1, 3, 5, 10, 20, 30, 40, 50, 70, 90		
5	22	FlexMicron P				
6	36	FlexMicron P				
7	52	FlexMicron P				

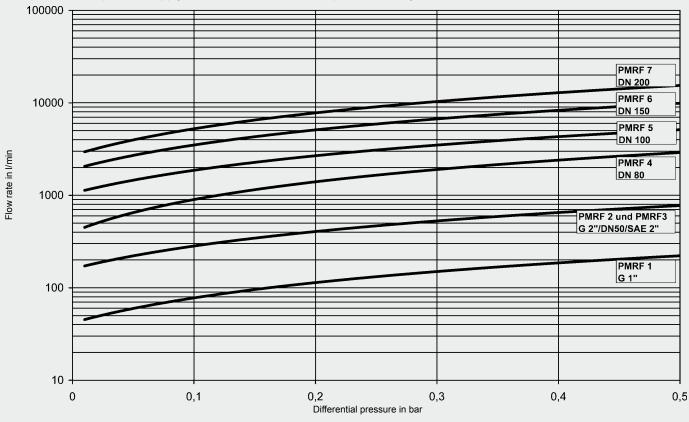
2.4.4 Permissible differential pressure The maximum permissible differential

pressure of the elements is dependent on the temperature in the application. Please refer to the table below:

Temperature	Filter material				
	PES / GF	PP	PA		
-10 + 30 °C	8 bar	4 bar	7 bar		
-10 + 60 °C	6.5 bar	2 bar	5.5 bar		
-10 +100 °C	5 bar	_	3.5 bar		

2.5 CIRCUIT DIAGRAM

3. N	MODEL CODE PMRF 1/2/3/4/5/6/	7							PMRF - 4 - E / <u>17 - Q - 40 - 10 - F - 1 -</u>
	RF = Process Multi Rheo Filter								
3 4 5	 = approx. 76 mm housing diameter = approx. 223 mm housing diameter = approx. 274 mm housing diameter = approx. 355 mm housing diameter = approx. 406 mm housing diameter = approx. 508 mm housing diameter = approx. 610 mm housing diameter 								
	using material								
	•		for s	size	!				
E	= stainless steel*		1	2	3		5	6	
						+	5	6	
	= carbon steel with internal 2K epoxy coating			_		4	5	6	<u> 7</u>
	or quality, see technical specifications mber of elements		Bol	d =	sta	ında	rd		
Num	mber or elements —		for s	ei ze					
1	= 1 filter element		1	5120				Т	_
	= 3 filter elements		•	2					
5 5	= 5 filter elements		$\overline{}$	<u>-</u> 2					
	= 7 filter elements				3				
	= 11 filter elements				3				
17	= 17 filter elements					4			
2	= 22 filter elements						5		
	= 36 filter elements							6	
52	= 52 filter elements								7
Conr	nnection type —								
			for s	size					
)	= G 1"				3				
	= G1/ 1/2"		_	2	3				
	= G 2"		_	2	3				
	= SAE DN50		_	2	3				_
	= DIN DN 50			2	3	<u> </u>		-	_
2	= DIN DN 80					4	-		_
₹ /	= DIN DN 100 = DIN DN 150						5	6	
v W	= DIN DN 200							0	7
	ment size								''
Elelli	ment size		for s	size					
10	= 10 "				3			Т	_
	= 20 "				3				+
	= 30 "		$\overline{}$		3				+
	= 40 "		$\overline{}$		3	4	5	6	7
	essure range					<u> </u>			
	•		for s	size					
;	= 6 bar				3				_
	= 10 bar		1	2	3	4	5	6	7
6	= 16 bar					4	5	6	
25	= 25 bar					4	5	6	7
10	= 40 bar		1			4	5	6	7
			Bol	d =	sta	ında	rd		
٧	al material — — — — — — — — — — — — — — — — — — —								
Clog	gging indicator ————————————————————————————————————								
) 1 2 3	 without with visual indicator (PVD 2B.1) with visual-electrical indicator (PVD 2D.0/-l V01 	,							
5 6 See E	 differential pressure gauge AL (measuring to a differential pressure gauge Stainless steel to with electrical indicator (PVD 2C.0) Brochure no.:D7.706.1/ Clogging Indicators to the state of the st	(measuri	ng r	Ī		bar	.)		
Modi ⟨	dification number — = the latest version is always supplied								


```
3.1 MODEL CODE FLEXMICRON E (ECONOMY) FILTER ELEMENTS
                                                                                                                 N - <u>40</u> - <u>FM-E</u> - <u>005</u> - <u>PP</u> - 1 -
Element length -
    = 10"
= 20"
                           30
                                = 30"
20
                           40
                                =
                                     40'
Element type
FM-E= FlexMicron E (Economy)
Filtration rating
001 = 1 \mu m
003 = 3 \mu m
                           010 = 10 \,\mu\text{m}
020 = 20 \,\mu\text{m}
                                                    040 = 40 \, \mu m
                                                                              090 = 90 \, \mu m
          3 µm
                                                    050 = 50 \, \mu \text{m}
005 = 5 \mu m
                           030 = 30 \, \mu \text{m}
                                                    070 = 70 \, \mu \text{m}
Material of filter element
     = polypropylene
End cap type
     = compression ring (DOE), no cap or seal (Ø 64 mm)
= plug-in adapter (1x 222 O-ring), flat end cap (Ø 64 mm)
= plug-in adapter (2x 222 O-ring), flat end cap (Ø 64 mm)
= gasket (DOE) (Ø 64 mm)
= plug-in adapter (2x 222 O-ring), locating spigot (Ø 64 mm)
      = bayonet (2x 226 O-ring), locating spigot (Ø 64 mm)
others on request
Seal material
      = NBR
      = FPM (Viton)
      = EPDM
Other element models available on request
3.1 MODEL CODE FLEXMICRON S (STANDARD) FILTER ELEMENTS
                                                                                                                 N - <u>40</u> - <u>FM-S</u> - <u>005</u> - <u>PP</u> - 1 - F
Element length -
10 = 10"
20 = 20"
                           30
                               = 30"
                           40 = 40"
Element type
FM-S= FlexMicron S (Standard)
Filtration rating
001 = 1 \mu m
003 = 3 \mu m
                           010 = 10 \, \mu m
                                                    040 = 40 \, \mu m
                                                                              090 = 90 \, \mu m
                           020 = 20 µm
                                                    050 = 50 \, \mu m
005 = 5 \mu m
                           030 = 30 \, \mu m
                                                    070 = 70 \, \mu m
Material of filter element
    = polypropylene
PA = polyamide
End cap type
      = compression ring (DOE), no cap or seal (Ø 64 mm)
= plug-in adapter (1x 222 O-ring), flat end cap (Ø 64 mm)
= plug-in adapter (2x 222 O-ring), flat end cap (Ø 64 mm)
         gasket (DOE) (Ø 64 mm)
         plug-in adapter (2x 222 O-ring), locating spigot (Ø 64 mm)
     = bayonet (2x 226 O-ring), locating spigot (Ø 64 mm)
others on request
Seal material
    = NBR
                               = EPDM
                           Ε
      = FPM (Viton) Z
                                = No seal (only for end cap form 0)
Other element models available on request
3.1 MODEL CODE FLEXMICRON P (PREMIUM) FILTER ELEMENTS
                                                                                                               N - 40 - FM-P - 005 - PES - 1 - F
Element length -
10 = 10"
                           30 = 30"
    = 20"
                               = 40"
Element type
FM-P= FlexMicron P (Premium)
Filtration rating
                           010 = 10 \, \mu m
                                                    040 = 40 \, \mu m
001 = 1 \, \mu m
          3 µm
                           020 = 20 \,\mu\text{m}
005 = 5 \mu m
                           030 = 30 \, \mu m
Filter material
PES = Polyester
GF = Glass fibre
End cap type
      = plug-in adapter (1x 222 O-ring), flat end cap, (Ø 64 mm)
= plug-in adapter (2x 222 O-ring), flat end cap, (Ø 64 mm)
         plug-in adapter (2x 222 O-ring), flat end cap, (Ø 70 mm)
         plug-in adapter (2x 222 O-ring), locating spigot, (Ø 70 mm)
         bayonet (2x 226 O-ring), locating spigot, (Ø 70 mm) open (gasket DOE), (Ø 64 mm)
     = Cuno adapter (hanging elements), (Ø 64 mm)
others on request
Seal material
      = NBR
Ν
      = FPM (Viton)
     = FPDM
Other element models available on request
```

E 7.714.1/04.14

4. FILTER CALCULATION / SIZING

4.1 PRESSURE DROP CURVES HOUSING

The pressure drop curves apply to water and other fluids up to a viscosity of 15 mm²/s.

The total pressure drop of the filter at a certain flow rate is the sum of the housing Δp and the element Δp .

The housing pressure drop can be determined using the following pressure drop curves. The pressure drop of the elements is calculated using the R factors.

In order to be able to size the filter correctly, the following design data should be available:

- Flow rate
- Type of medium
- Materials/resistance
- Viscosity
- Required filtration rating
- Particulate loading in the fluid
- Type of contamination
- Operating pressure
- Operating temperature
- Integration of the PMRF into the whole system

A further factor in the calculation is the flow velocity through the flange inlet. It should not exceed 4 m/s.

4.2 PRESSURE DROP CALCULATION FOR ELEMENTS

The pressure drop for elements in clean condition is calculated as

 $\Delta p [bar] = R \times V [mm^2/s] \times Q [l/min]$ n x I [inch] x 1000

R = R factor

V = viscosity [mm²/s]

Q = flow rate [l/min]

n = no. of elements

L = element length [inch]

FlexMicron E (Economy) R (resistance) factor

Filtration rating	Water-based fluids
[µm]	
1	37
3	29
5	20
10	11
20	8
30	6.8
40	5.4
50	4.2
70	3.1

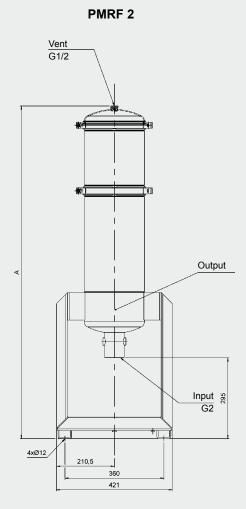
FlexMicron S (Standard) R (resistance) factor

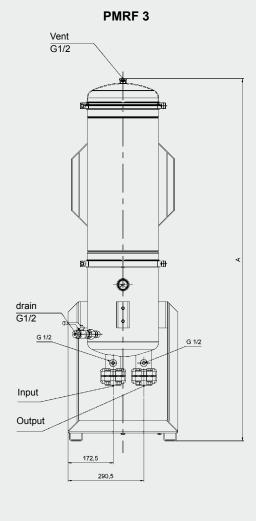
Filtration rating	Water-based fluids			
[µm]	PA	PP		
1	274	321		
3	116	186		
5	42	132		
10	15	99		
20	11	54		
30	6	16		
40	3.8	12		
50	1.9	10		
70	1.1	8		
90	0.6	6		

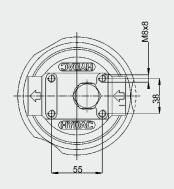
FlexMicron P (Premium) R (resistance) factor

Filtration rating [µm]	Water-based fluids PES*	Oils PES*	GF**
		-	
1	32	10.4	5.4
3	24	7.5	-
5	18	4.4	4.3
10	17	1.8	3.2
20	15	1.8	-
30	14	0.9	-
40	14	0.9	-

^{*} β > 5000

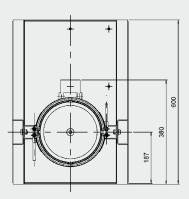

^{**&}lt;sup>'</sup>β >20000

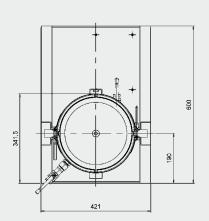

5. DIMENSIONS


5.1 DIMENSIONS OF FILTER HOUSING

The dimensions given below are based on standard pressure ranges in combination with stainless steel or uncoated carbon steel housings. For carbon steel with internal coating, the filter housing is divided into an upper and lower section. This increases the overall height of the housing.

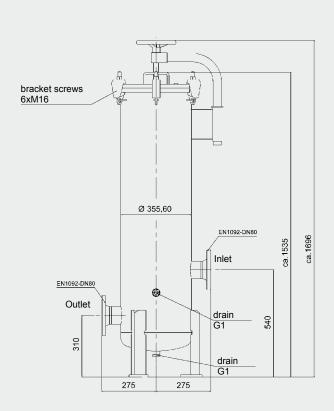
PMRF 1 106 Ø128

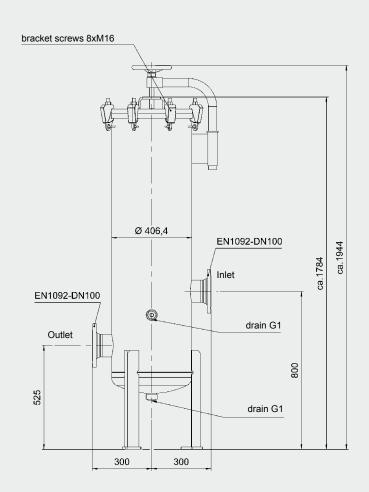


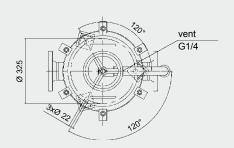


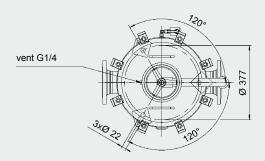
Ø76.1

Length	Α	Volume
		[1]
10"	332.5	1.1
20"	586.5	2.1
30"	816	3
40"	1094.5	4

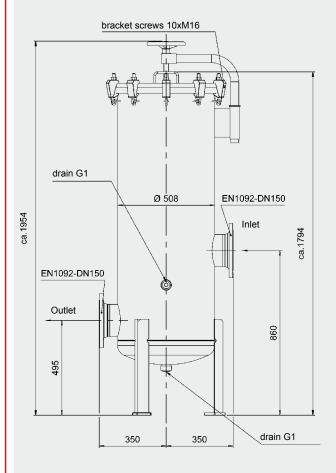


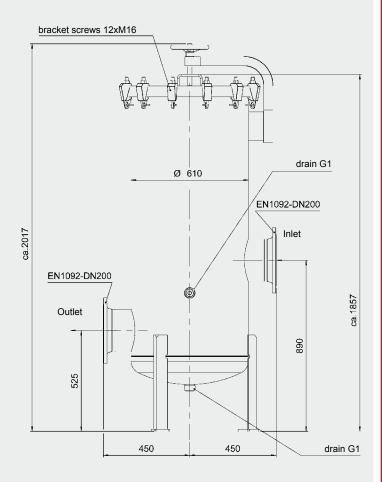

Length	Α	Volume
		[1]
10"	975	17
20"	1215	26
30"	1433	35
40"	1682	45

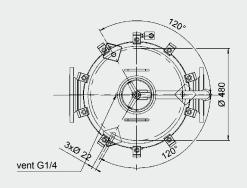


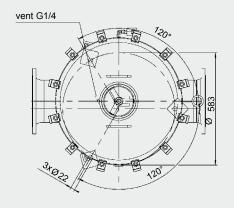

Length	Α	Volume
		[1]
10"	798	20
20"	1066	40
30"	1323	50
40"	1578	65

- The filter must not be used as a pipe support.
 The dimensions quoted have ± 5 mm tolerances for sizes up to 3.
 The dimensions quoted have ± 10 mm tolerances for sizes 4 upwards.







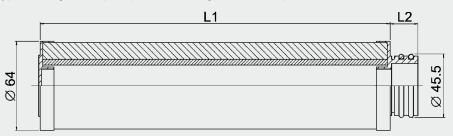


- The filter must not be used as a pipe support.
 The dimensions quoted have ± 5 mm tolerances for sizes up to 3.
 The dimensions quoted have ± 10 mm tolerances for sizes 4 upwards.

- The filter must not be used as a pipe support.
 The dimensions quoted have ± 5 mm tolerances for sizes up to 3.
 The dimensions quoted have ± 10 mm tolerances for sizes 4 upwards.

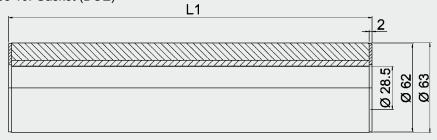
5.2 DIMENSIONS OF FLEXMICRON E ELEMENTS

Type 0: Compression ring (DOE), no cap or seal


L1	
	28.5
	Ø 8

Code	L1 in mm
N10FM-E	254
N20FM-E	508
N30FM-E	762
N40FM-E	1016

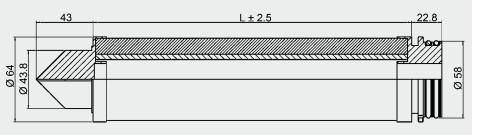
	L1	L2_
Ø 64		Ø 45.5


L1 in mm	L2 in mm
254	20
508	20
762	20
1016	20
	254 508 762

Type 2: Plug-in adapter (2 x 222 O-ring), flat end cap

Designation	L1 in mm	L2 in mm
N10FM-E	254	20
N20FM-E	508	20
N30FM-E	762	20
N40FM-E	1016	20

Type 1	10:	Gasket	(DOE)
--------	-----	--------	-------


Designation	L1 in mm
N10FM-E	254
N20FM-E	508
N30FM-E	762
N40FM-E	1016

Type 13: Plug-in adapter (2x 222 O-ring), locating spigot

	43	L ± 2.5	20
			9797
3 64 43.8			245.5
Ø			
			<u>, </u>

Designation	L1 in mm	L2 in mm
N10FM-E	254	43
N20FM-E	508	43
N30FM-E	762	43
N40FM-E	1016	43

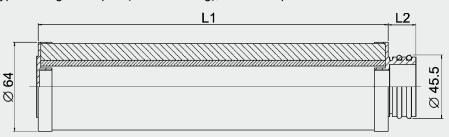
Type 14: Bayonet (2x 226 O-ring	g), locating spigot
---------------------------------	---------------------

Designation	L1 in mm	L2 in mm
N10FM-E	235	43
N20FM-E	489	43
N30FM-E	743	43
N40FM-E	997	43

5.3 DIMENSIONS OF FLEXMICRON S ELEMENTS

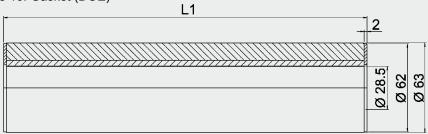
Type 0: Compression ring (DOE), no cap or seal

L1	
	Ø 28.5

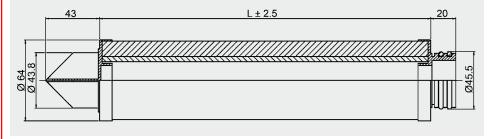

Code	L1 in mm
N10FM-S	254
N20FM-S	508
N30FM-S	762
N40FM-S	1016

T 4 DI 1			
Type 1: Plug-in	adapter (1	1 x 222 O-rina).	flat end cap

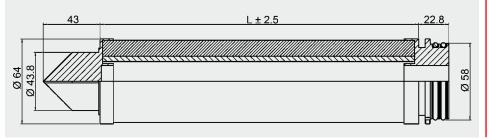
Турс	 L1	L2
Ø 64		Ø 45.5


Designation	L1 in mm	L2 in mm
N10FM-S	254	20
N20FM-S	508	20
N30FM-S	762	20
N40FM-S	1016	20

Type 2: Plug-in adapter (2 x 222 O-ring), flat end cap

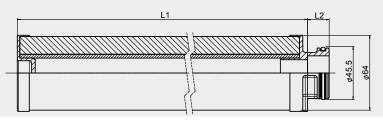

Designation	L1 in mm	L2 in mm
N10FM-S	254	20
N20FM-S	508	20
N30FM-S	762	20
N40FM-S	1016	20

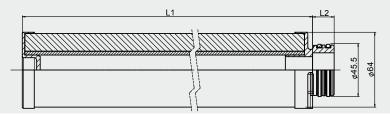
Type 10: Gasket (DOE	Type 1	10:	Gasket	(DOE)
----------------------	--------	-----	--------	-------


Designation	L1 in mm
N10FM-S	254
N20FM-S	508
N30FM-S	762
N40FM-S	1016

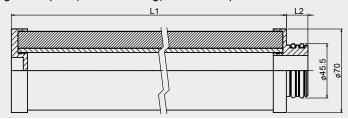
Type 13: Plug-in adapter (2x 222 O-ring), locating spigot

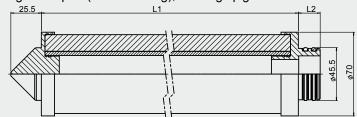
Designation	L1 in mm	L2 in mm
N10FM-S	254	43
N20FM-S	508	43
N30FM-S	762	43
N40FM-S	1016	43

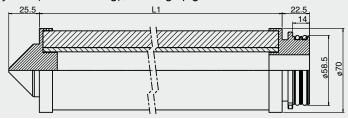

Type 14: Bayonet	(2x 226 O-ring),	locating spigot

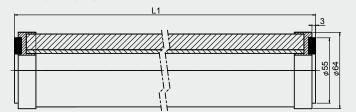

Designation	L1 in mm	L2 in mm
N10FM-S	235	43
N20FM-S	489	43
N30FM-S	743	43
N40FM-S	997	43

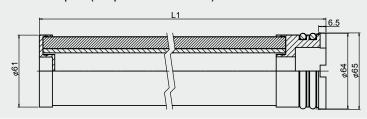
5.4 DIMENSIONS OF FLEXMICRON P (PREMIUM)


Type 1: Plug-in adapter (1 x 222 O-ring), flat end cap


Type 2: Plug-in adapter (2 x 222 O-ring), flat end cap


Type 3: Plug-in adapter (2 x 222 O-ring), flat end cap


Type 5: Plug-in adapter (2x 222 O-ring), locating spigot


Type 7: Bayonet (2x 226 O-ring), locating spigot

Type 10: Gasket (DOE), open

Type 12: Cuno adaptor (suspended elements)

Code	L1 in mm	L2 in mm
N10MR-P	263	18
N13MR-P	339	18
N20MR-P	517	18
N30MR-P	771	18
N40MR-P	1025	18

Designation	L1 in mm	L2 in mm
N10MR-P	263	18
N13MR-P	339	18
N20MR-P	517	18
N30MR-P	771	18
N40MR-P	1025	18

Designation	L1 in mm	L2 in mm
N10FM-P	263	18
N13FM-P	339	18
N20FM-P	517	18
N30FM-P	771	18
N40FM-P	1025	18

Designation	L1 in mm	L2 in mm
N10FM-P	263	18
N13FM-P	339	18
N20FM-P	517	18
N30FM-P	771	18
N40FM-P	1025	18

Designation	L1 in mm
N10FM-P	241
N13FM-P	317
N20FM-P	495
N30FM-P	749
N40FM-P	1003

Designation	L1 in mm
N10MR-P	254
N13MR-P	330
N20MR-P	508
N30MR-P	762
N40MR-P	1016
N40MR-P990	988

Designation	L1 in mm
N37FM-P	977

E 7.714.1/04.14

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAD Process Technology GmbH Am Wrangelflöz 1

D-66538 Neunkirchen

Tel.: +49 (0)6897 - 509-1241 Fax: +49 (0)6897 - 509-1278 Internet: www.hydac.com

E-Mail: prozess-technik@HYDAC.com