

Description:

The ENS 3000 with IO-Link communication interface is an electronic level switch with integrated display. The instrument has a switching output and an additional output that can be configured as switching or analogue output ($4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$). The ENS 3000 can be used not only for oil but also for water; and is available with or without temperature probe.
IO-Link is the communication between the sensor/actuator (IO-Link device) and an IO-Link master based on a point-to-point interface.
The advantages:
Process data, parameters and diagnostic information of the level switch can be transmitted via a standard cable (SDCI mode). The integrated LED display provides information on the operating mode and the switching statuses.
Simple exchange: the IO-Link master saves the parameters of the connected level switch and transmits them to the newly connected level switch when replaced. Thus, timeconsuming new parameterisations will no longer be required.
If IO-Link is not used, the sensor still functions as a level switch with two switching outputs (SIO mode).
To create customer-specific small series or to duplicate sensor settings across the system, the sensor can also be easily adjusted outside the system to suit the particular application, with the HYDAC Programming Device HPG P1-000, the HYDAC Programming Adapter ZBE P1-000 or by means of the Portable Data Recorder HMG 4000.
Typical fields of application for ENS 3000 IO-Link are machine tools, handling and assembly automation, intralogistics or the packaging industry.

Level Switch ENS 3000

Capacitive \square Display
IO-Link
Optional temperature measurement

Technical data:

Input data					
Measuring ranges	mm	170	290	390	590
Rod length	mm	250	410	520	730
Max. speed of change in fluid level	mm/s	40	60	80	100
Mechanical connection		Collar 22 mm for cutting ring fitting			
Parts in contact with fluid		Rod: Ceramic, coated			
Fluids ${ }^{1)}$		Hydraulic oils (mineral-based), synth. oils, fluids containing water			
Temperature					
Measuring range ${ }^{2)}$		$-25 . .+100{ }^{\circ} \mathrm{C}$			
Output data					
Switching outputs		PNP transistor outputs Switching current: max. 250 mA per switching output			
Analogue output, permitted load resistance		Selectable: 4 .. 20 mA load resist. max. 500Ω $0 . .10 \mathrm{~V}$ load resist. min. $1 \mathrm{k} \Omega$			
Accuracy		Level: $\leq \pm 2$ \% FS Temperature: $\pm 1.5^{\circ} \mathrm{C}$			
Temperature drift (environment)		$\leq 0.015 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$			
Repeatability ${ }^{\text {3) }}$		Level: $\leq \pm 2 \%$ FS Temperature: $\leq \pm 1.5^{\circ} \mathrm{C}$			
Response time acc. to DIN EN 60751 (temperature probe)		t90 $\sim 180 \mathrm{~s}$			
Environmental conditions					
Ambient temperature range		$0 . .+60^{\circ} \mathrm{C}$			
Storage temperature range		$-40 . .+80^{\circ} \mathrm{C}$			
Fluid temperature range		0 .. $+60^{\circ} \mathrm{C}$			
Max. tank pressure		0.5 bar (short-term 3 bar, t < 1 min)			
(€ mark		EN 61000-6-1 / 2 / 3 / 4			
${ }^{\text {c }} \mathbf{N X}_{\text {us }}$ mark ${ }^{4)}$		Certificate-No.: E318391			
Vibration resistance acc. to DIN EN 60068-2-6 (0 .. 500 Hz)		$\leq 5 \mathrm{~g}$			
Shock resistance acc. to DIN EN 60068-2-27 (11 ms)		$\leq 25 \mathrm{~g}$			
Protection class acc. to DIN EN $60529{ }^{\text {5 }}$		IP 67			
IO-Link specific data					
IO-Link revision		V1.1 / support V1.0			
Transmission rate, baud rate ${ }^{6)}$		38.4 kBaud (COM2)			
Minimum cycle time		20 ms			
Process data width		Version without temperature sensor: 16 Bit Version with temperature sensor: 32 Bit			
SIO mode supported		Yes			
M-sequence capability		OPEF RATE		vel) vel /	
IO Device Description (IODD) download at: https://ioddfinder.io-link.com/\#/					
Other data					
Supply voltage when applied acc. to UL specifications		9.. 35 V DC, if PIN 2 = SP218 .. 35 V DC, \quad if PIN $2=$ analogue output- limited energy - acc. to 9.3 UL 61010; Class 2 ;UL 1310 / 1585 ; LPS UL 60950			
Residual ripple of supply voltage		≤ 5 \%			
Current consumption		$\begin{array}{ll} \leq 0.535 \mathrm{~A} & \text { with active switching outputs } \\ \leq 35 \mathrm{~mA} & \text { with inactive switching outputs } \\ \leq 55 \mathrm{~mA} & \text { with inactive switching output and analogue outp } \end{array}$			
Display		4-digit, LED, 7 segment, red, height of digits 7 mm			
Weight	g				
Note: Reverse polarity protection o FS (Full Scale) = relative to c 1) Other fluids on request ²) Observe ambient temperat $^{\text {3) }}$ Specified at calm, non-turb (4) Environmental conditions a (5) With mounted mating conn 6) Connection with unshielded	ge, ove ing ran 010-1 ding p line p	ove No. 6 clas up to	line	ction 0 m .	

Setting options:

All terms and symbols used for setting the ENS 3000 as well as the menu structure comply with the specifications in the VDMA Standard for level switches.

Setting ranges for the switching outputs:

Measuring range/ rod length in cm	Lower limit of RP (FL) in cm	Upper limit of SP (FH) in cm
$17.0 / 25.0$	0.2	17.0
$29.0 / 41.0$	0.3	29.0
$\frac{39.0 / 52.0}{} 0.4$	39.0	
$59.0 / 73.0$	0.6	59.0
Measuring range/ rod length in cm	Min. difference betw. RP \& SP and FL \& FH in cm	Increment*
$17.0 / 25.0$	0.2	in cm
$29.0 / 41.0$	0.3	0.1
$\frac{39.0 / 52.0}{59.0 / 73.0}$	0.4	0.1

Measuring range Temperature	Lower limit of RP (FL)	Upper limit of SP (FH)
-25 .. $+100{ }^{\circ} \mathrm{C}$	$-23.5{ }^{\circ} \mathrm{C}$	$100.0{ }^{\circ} \mathrm{C}$
Measuring range Temperature	Min. difference Increment* betw. RP and SP \& FL and FH	
$-25 . .+100{ }^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.5{ }^{\circ} \mathrm{C}$

* All ranges given in the table can be adjusted by the increments shown.
SP = switch point
RP = switch-back point
FL = level/temperature window lower value
FH = level/temperature window upper value

Additional functions:

- Switching mode of the swiching outputs adjustable (switch point function or window function)
- Switching direction of the switching outputs adjustable (N/C or N/O function)
- Switching outputs can be assigned to the fluid level or to the temperature
- Switch-on and switch-off delay adjustable from 0.00 .. 99.99 seconds
- Analogue output signal selectable 4 .. 20 mA or 0 .. 10 V
- Analogue output can be assigned to fluid level or temperature as required (depending on model)

Pin connections:

Pin	Signal	Description
1	L+	$+U_{B}$
2	Q2/QA	Switching output (SP2) / analogue output
3	L-	0 V
4	Q1/C	IO-Link communication / switching output (SP1)

Dimensions:

Model code:

$\mathrm{K}=$ ceramic

Accessories:

Appropriate accessories, such as mating connectors, mechanical adapters, splash guards and programming units, can be found in the Accessories brochure.

Note:

The information in this brochure relates to the operating conditions and applications described.
For applications or operating conditions not described, please contact the relevant technical department.
Subject to technical modifications.

HYDAC ELECTRONIC GMBH

Hauptstraße 27, 66128 Saarbrücken Germany
Telephone +49 (0)6897 509-01
Fax +49 (0)6897 509-1726
E-mail: electronic@hydac.com
Internet: www.hydac.com

